Patel, Rikesh and Achamfuo-Yeboah, Samuel and Light, Roger and Clark, Matt (2012) Ultrastable heterodyne interferometer system using a CMOS modulated light

نویسندگان

  • Rikesh Patel
  • Samuel Achamfuo-Yeboah
  • Roger Light
  • Matt Clark
چکیده

A novel ultrastable widefield interferometer is presented. This uses a modulated light camera (MLC) to capture and stabilise the interferogram in the widefield heterodyne interferometer. This system eliminates the contribution of piston phase to the interferogram without the need for common path optics and results in a highly stable widefield interferometer. The MLC uses quadrature demodulation circuitry built into each pixel to demodulate the light signal and extract phase information using an electronic reference signal. In contrast to the work previously presented [Opt. Express 19, 24546 (2011)], the reference signal is derived from one of the pixels on board the MLC rather than an external source. This local reference signal tracks the instantaneous modulation frequency detected by the other pixels and eliminates the contribution of piston phase to the interferogram, substantially removing the contributions of unwanted vibrations and microphonics to the interferogram. Interferograms taken using the ultrastable system are presented with one of the interferometer mirrors moving at up to 85 mm s−1 over a variety of frequencies from 18 Hz to 20 kHz (giving a variation in optical path length of 220 μm, or 350 wavelengths at 62 Hz). This limit was the result of complex motion in the mirror mount rather than the stability limit of the system. The system is shown to be insensitive to pure piston phase variations equivalent to an object velocity of over 3 m s−1 . © 2012 Optical Society of America OCIS codes: (100.3175) Interferometric imaging; (110.3175) Interferometric imaging. References and links 1. H. Osterberg, “An interferometer method of studying the vibrations of an oscillating quartz plate,” J. Opt. Soc. Am. 22, 19–34 (1932). 2. R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Widefield heterodyne interferometry using a custom CMOS modulated light camera,” Opt. Express 19, 24546–24556 (2011). 3. F. Ghebremichael and R. Knize, “Polymer relaxations determined by use of a temporally and thermally stable interferometer,” Opt. Lett. 24, 1481–1483 (1999). 4. K. Birch and M. Okaji, “Stable interferometer supporting system,” J. Phys. E: Sci. Instrum. 19, 361–363 (1986). 5. W. Lehmann, P. Gattinger, M. Keck, F. Kremer, P. Stein, T. Eckert, and H. Finkelmann, “Inverse electromechanical effect in mechanically oriented sc*-elastomers examined by means of an ultra-stable Michelson interferometer,” Ferroelectr. 208, 373–383 (1998). 6. H. Kikuta, S. Asai, H. Yasukochi, and K. Iwata, “Force microscopy using common-path optical-heterodyne interferometer,” Jpn. J. Appl. Phys. Part 1 30, 587–590 (1991). 7. Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett. 36, 331–333 (2011). #169402 $15.00 USD Received 25 May 2012; revised 5 Jul 2012; accepted 9 Jul 2012; published 19 Jul 2012 (C) 2012 OSA 30 July 2012 / Vol. 20, No. 16 / OPTICS EXPRESS 17722 8. N. A. Riza, M. A. Arain, and F. N. Ghauri, “Self-calibrating hybrid wavelength, polarization, and timemultiplexed heterodyne interferometers for angstrom precision measurements,” Opt. Eng. 45, 125603 (2006). 9. J. Chieh, S. Yang, H.-E. Horng, C.-Y. Hong, and H. Yang, “Measurements of the complex transmission/reflection coefficient of a material using mixed-type common-path heterodyne interferometery,” IEEE Trans. Instrum. Meas. 58, 1878–1885 (2009). 10. N. Sawyer, C. See, M. Clark, M. Somekh, and J. Goh, “Ultrastable absolute-phase common-path optical profiler based on computer-generated holography,” Appl. Opt. 37, 6716–6720 (1998). 11. M. J. Offside, M. Somekh, and C. See, “Common path scanning heterodyne optical profilometer for absolute phase measurement,” Appl. Phys. Lett. 55, 2051–2053 (1989). 12. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983). 13. R. Smythe and R. Moore, “Common path scanning heterodyne optical profilometer for absolute phase measurement,” Opt. Eng. 23, 361–364 (1984). 14. B. K. A. Ngoi, K. Venkatakrishnan, and N. R. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001). 15. P. Dmochowski, B. Hayes-Gill, M. Clark, J. Crowe, M. Somekh, and S. Morgan, “Camera pixel for coherent detection of modulated light,” Electron. Lett. 40, 1403–1404 (2004). 16. M. J. Griffin, “An introduction to whole body vibration,” in Handbook of Human Vibration, (Academic Press, 1996), 27–42. 17. A. Ismail, M. Nuawi, N. Kamaruddin, and R. Bakar, “Comparative assessment of the whole-body vibration exposure under different car speed based on Malaysian road profile,” J. Appl. Sci. 10, 1428–1434 (2010). 18. C. Gordon, “Generic criteria for vibration-sensitive equipment,” Proc. SPIE Int. Soc. Opt. Eng. 1619, 71–85 (1992). 19. W. W. Hays (U.S.), Facing Geologic and Hydrologic Hazards: Earth-Science Considerations (U.S. Dept. of the Interior, Geological Survey, 1981). 20. P. Stafford, F. Strasser, and J. Bommer, “An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region,” Bull. Earthquake Eng. 6, 149–177 2008.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Widefield heterodyne interferometry using a custom CMOS modulated light camera.

In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (...

متن کامل

Patel, Rikesh and Achamfuo-Yeboah, Samuel and Light, Roger and Clark, Matt (2011) Widefield heterodyne interferometry using a custom CMOS modulated light

In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (...

متن کامل

Modeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm

Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...

متن کامل

Error Analysis, Design and Modeling of an Improved Heterodyne Nano-Displacement Interferometer

A new heterodyne nano-displacement with error reduction is presented. The main errors affecting the displacement accuracy of the nano-displacement measurement system including intermodulation distortion error, cross-talk error, cross-polarization error and phase detection error are calculated. In the designed system, a He-Ne laser having three-longitudinal-mode is considered as the stabiliz...

متن کامل

Integrated heterodyne interferometer with on-chip modulators and detectors.

We demonstrate, to our knowledge, the first on-chip heterodyne interferometer fabricated on a 300-mm CMOS compatible process that exhibits root-mean-square (RMS) position noise on the order of 2 nm. Measuring 1 mm by 6 mm, the interferometer is also, to our knowledge, the smallest heterodyne interferometer demonstrated to date and will surely impact numerous interferometric and metrology applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016